Difference between revisions of "MapBasedR"
David.Alonso (talk | contribs) |
David.Alonso (talk | contribs) |
||
Line 3: | Line 3: | ||
== Summary == | == Summary == | ||
− | We checked the <math>f_{sky}=0.1</math> case in [http://users.physics.harvard.edu/~buza/20150505_fisher/ Victor's forecasts] using our map-based component separation code on PySM simulations. | + | We checked the <math>f_{sky}=0.1</math> case in [http://users.physics.harvard.edu/~buza/20150505_fisher/ Victor's forecasts] using our map-based component separation code on PySM simulations. Note that here we assumed (wrongly) that the '''noise levels quoted by Victor were in intensity''', and that the levels in polarization were obtained by multiplying by <math>\sqrt{2}</math>. |
Bullet-point results (details below): | Bullet-point results (details below): | ||
* Assuming no delensing: <math>\sigma(r)=1.6\times10^{-3}</math> | * Assuming no delensing: <math>\sigma(r)=1.6\times10^{-3}</math> |
Latest revision as of 11:00, 9 June 2016
(David Alonso writing)
Summary
We checked the Victor's forecasts using our map-based component separation code on PySM simulations. Note that here we assumed (wrongly) that the noise levels quoted by Victor were in intensity, and that the levels in polarization were obtained by multiplying by . Bullet-point results (details below):
case in- Assuming no delensing:
- Assuming a 0.25 delensing factor:
These number roughly agree with Victor's forecast
, considering our potentially different assumptions about noise power spectra and delensing efficiency.Simulations
We used PySM to generate full-sky simulations including:
- Power-law synchrotron (spatially-varying spectral index).
- Single-component thermal dust (spatially-varying temperature and spectral index).
- , partially de-lensed CMB.
- Noise levels compatible with Victor's case.
The maps are cut using a mask defined by selecting the cleanest 4000 sq-deg of the southern sky in polarization.
Foreground removal
We run a map-based Bayesian component-separation code (Alonso et al. in prep.) on the simulations. The code samples the fully-resolved amplitudes of the three different components as well as spectral parameters (
and ). The latter are assumed constant on larger pixels, with HEALPix resolution (corresponding to ~4 deg). Fig. below shows the B-mode map at 145 GHz (left) and the mean CMB-only B-mode map output by the code (right).Estimating r
We compute the B-mode power spectrum for each simulation and fit a primordial + lensing
template with amplitudes for both components (the first one being ). For this we only use multipoles . See result below for the no-delensing and 0.25-delensing cases.