Development and Characterization of the POLARBEAR-2b Receiver for the Simons Array

Lindsay Ng Lowry
2020-08-14
CMB-S4 Workshop Junior Scientist Talks
Introduction

- Graduate student at UC San Diego since 2014
- Research Advisor: Brian Keating
- Grad School Research:
 - Simons Array telescope hardware and site preparation
 - POLARBEAR-2b development and readout testing, particularly SQUID selection
 - FTS development and use
- Other Interests:
 - Project Management
 - Outreach and Mentoring
 - UCSD Cosmic Tours Portable Planetarium
 - UCSD Grad Women in Physics
 - Scientist Pen Pal
Outline

- Simons Array
- Site and telescope preparation
- POLARBEAR-2b
 - Overview
 - Lab Testing
 - Current status and future plans
Simons Array (expansion of the POLARBEAR-1 experiment)

- Located on Cerro Toco in the Atacama Desert, Chile
- Set of 3 telescopes identical in optical design to POLARBEAR-1’s Huan Tran Telescope with upgraded receivers
 - First new receiver (PB-2a) installed, assembly of second receiver (PB-2b) underway at the site
- Targeting CMB polarization measurements at \(50 \leq \ell \leq 2000 \)
Site and Telescope Preparation

- Off-axis Gregorian telescopes with monolithic primary mirrors measuring 2.5m in diameter
- Changes to accommodate new, larger receivers:
 - Stronger receiver mount structure and hoisting system for installation
 - Upgraded receiver enclosure structure and prime focus baffle
 - Repositioning and addition of counterweights
 - Additional enclosures for room-temperature electronics
Site and Telescope Preparation

- Gregorian-Dragone telescopes with monolithic primary mirrors measuring 2.5m in diameter
- Changes to accommodate new, larger receivers:
 - Stronger receiver mount structure and hoisting system for installation
 - Upgraded receiver enclosure structure and prime focus baffle
 - Repositioning and addition of counterweights
 - Additional enclosures for room-temperature electronics
POLARBEAR-2b (PB-2b)

~ 2 m
POLARBEAR-2b (PB-2b)

- SQUID Array Amplifiers
- Focal Plane with Multiplexing Readout Components
- Reimaging lenses
- Cryogenic HWP
- Zotefoam Window
- Millikelvin Refrigerators (not shown)
PB-2b Lab Testing

- Backend assembly and characterization
 - Millikelvin fridge testing and optimization
 [arXiv:1806.05576]
 - Dark characterization of detector modules and integration with readout system

- Integration of backend and optics tube
 - Cryogenic validation
 - Test of cryogenic half-wave plate operation
 [see upcoming presentation by Charlie Hill]
 - Optical characterization of detector modules
 - Operation of full-scale readout system
PB-2b Lab Testing - Readout System

- PB-2b’s detector/readout system includes:
 - 7 detector wafers, each containing over 1,000 optical TES bolometers
 - 30 resonator chips attached to each detector wafer, each containing 40 resonators
 - 210 SQUID array amplifiers, one for each resonator chip
 - Warm electronics implementing digital active nulling (DAN)

- PB-2b SQUID Array Amplifiers
 - Require lower input coil inductance compared to PB-1 in order to operate at higher frequencies with higher multiplexing factor
 - Options:
 - NIST SA13 design
 - Star Cryogenics E2 design
 - Star Cryogenics F2 design
 - Initial choice for PB-2b
Final in-lab run of PB-2b included a full focal plane and set of readout components, including 210 Star Cryogenics E2 SQUIDs.

Difficulties encountered:
- Unexpected increase in noise when operating detectors at high current.
- Kinks/features in the $V-\Phi$ curves of 33% of SQUIDs, with an apparent dependency on SQUID location.

Decision was made to switch to NIST SA13 SQUIDs when deploying PB-2b to the site, given this design’s demonstrated full-scale performance in PB-2a and in SPT-3G.
PB-2b Lab Testing - Readout System

- NIST SA13 SQUIDs screened in a separate cryostat after PB-2b’s last in-lab run
- Results are consistent with what we expect given experience with PB-2a
PB-2b Current Status and Future Plans

- PB-2b was disassembled and shipped to the Chilean site in early 2020, following its last in-lab run at UCSD.
- Reassembly at the site began in March 2020, with a team of SA personnel.
- Progress was halted due to Covid-19.
- Hoping to restart assembly as soon as it is safe to do so!
Thank you!

Contact Info:
Lindsay Ng Lowry
lindsay@nglowry.com