Cosmology with Next-Generation Millimeter-wave Spectrometers

Kirit S. Karkare
Grainger/KICP Fellow -> NSF AAPF @ UChicago, Schramm Fellow @ Fermilab
CMB-S4, 2020-08-14
Temperature-to-Polarization Leakage in the BK15 r constraint

Using far-field beam maps and the Planck T map, calculate $T\rightarrow P$ leakage and propagate through r analysis.

Estimate a bias on the recovered r value of

$$\Delta r = 0.0027 \pm 0.0019 \quad \text{...compare to BK15 statistical} \quad \sigma(r) = 0.020$$

arXiv: 1904.01640

Ground Shield Analysis for CMB-S4 SATS

Compared geometry of forebaffles and ground shields needed to satisfy double-diffraction criterion (minimize far-sidelobe coupling to ground)

Fed directly into cryostat configuration decision -> “Extended Hybrid”
"Intensity Mapping" (IM): using (relatively) low angular resolution observations to measure large-scale structure, *without needing to resolve individual sources*. CIB is a classic example.

"Line Intensity Mapping" (LIM): the above, but targeting a spectral line so that observed wavelength maps directly to redshift. Requires moderate-resolution spectroscopy, but again no need to resolve individual sources.
We have galaxy surveys - why consider LIM?

- Almost all the cosmology you can do with a galaxy survey, you can do with LIM!
- **Efficiency:** Every photon “counts” -- i.e., does not need to be detected above a flux threshold -- so large volumes can be surveyed much more quickly. Especially useful for extending to higher redshifts -> more modes.

- **Multi-tracer:** At lower redshift, LIM surveys will overlap with optical surveys and trace the same structure, allowing for e.g., cosmic variance cancellation.
- **Systematics:** Most LIM surveys use observational techniques that are very different from galaxy surveys, so cross-correlations are robust.
- **Astrophysics:** In addition to cosmology from LSS, each line probes a different phase of the ISM/IGM and can inform high-z star formation, reionization physics, etc...

CMB: $\ell^2 \sim 10^7$ modes

HI Stage 2 White paper
1810.09572
LIM at mm wavelengths

Far-IR lines excited by absorbed stellar radiation, emitted on top of the dust continuum. Known to exist at high redshift (ALMA), good tracers of star formation.

In particular: detectable from the ground at mm-wave CO (distinct ladder structure), [CII] (very bright)
Our focus: LIM at mm wavelengths

A single instrument, covering ground-based CMB frequencies (80-300 GHz) is in principle sensitive to [CII] and CO over the entire range of $0 < z < 10$.

Just add moderate-resolution spectroscopy to access/isolate modes along the line of sight ($R > 100$, ~few GHz or better resolution).

Line separation is the major analysis challenge.
“Shovel-ready” Wideband mm-wave Spectrometers

Fourier Transform Spectrometer (CONCERTO) neel.cnrs.fr

Fabry-Perot (CCAT-p)
1807.00058

Grating Spectrometer (TIME)
Abby Crites

High-Resolution Long-λ FPI for HIRMES

- Scanning PZT (with mechanical motion multiplier)
- Moving flex-vane stage
- Flex-vane stage
- Fixed part of flex-vane stage

Transmission

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
<tr>
<td>3rd</td>
</tr>
</tbody>
</table>

Output Power [dB]

- Predicted
- Measured

16 Spatial Pixel x 60 Spectral Pixel Grating Spectrometer
The SuperSpec Team

Caltech/JPL
C. M. Bradford
S. Hailey-Dunsheath
A. Kovacs
H. G. Leduc
J. Redford
J. Zmuidzinas

University of Chicago
K. Karkare
R. McGeehan
E. Shirokoff

Argonne
P. Barry

Cardiff University
S. Doyle
C. E. Tucker

Arizona State University
P. Mauskopf
G. Che
S. Gordon

University of Colorado Boulder
J. Glenn
J. Wheeler

INAOE Puebla
David Hughes
The SuperSpec On-chip mm-wave Spectrometer

Take favorable aspects of a grating spectrometer (wide bandwidth, high sensitivity) and put it on a silicon wafer.

Eventually could approach CMB efficiency with filled focal planes, i.e. hundreds of spectrometers on a single 6” chip.

Suitable for filled focal planes (intensity mapping) or steered multi-object spectrographs.

Compare one spectrometer:

TIME grating, R~200:
32 x 23 x 1 cm ~ 736 cm³

SuperSpec, R~300:
3.6 x 5.7 x 0.05 cm ~ 1 cm³
The SuperSpec Concept

A general filter-bank (cochlear) spectrometer printed on a silicon wafer

Incoming broadband radiation sorted by narrowband $\lambda/2$ filters

Each channel couples to a separate power detector

Channel width/spacing independently adjustable via feature geometry

Kovacs and Zmuidzinas 2010
Photon noise dominated for ground-based observations.

Chicago effort: detector testing, readout development, analysis pipeline, interface with telescope.
Large Millimeter Telescope

James Lowenthal/UMass
SuperSpec @ LMT

Pre-COVID Status: Ready to ship instrument to LMT in Spring 2020 for a Summer observing run - we should be on the mountain right now!

Goals:
1. Demonstrate that SuperSpec can produce a spectrum of individual high-redshift galaxies
2. Understand noise performance to feed back into detector development
3. Develop on-sky calibration routines for spectroscopic MKIDs

Jason Glenn
Matt Bradford
Scaling Up Focal Planes

Pete Barry

Diagram showing the layout of spectrometers and other components in a focal plane array.
Next-Generation LIM Surveys

Projections: 500x spectrometers, 80-310 GHz, 4 years, 1000 deg\(^2\) from South Pole

<table>
<thead>
<tr>
<th>Expansion History Constraints</th>
<th>z</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>0.3</td>
<td>0.5</td>
<td>1.4</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Percent-level measurements of the BAO at \(z > 3\), constraining time-varying EOS + some early dark energy models (dependent on true line intensity)

Plus many more science cases:

Cosmology: primordial power spectrum features, neutrinos, modified gravity, B-mode delensing (Karkare PRD, [arXiv:1908.08128](https://arxiv.org/abs/1908.08128))

Astrophysics: reionization with HI, high-z star formation, molecular gas, dusty galaxies
Summary

Millimeter-wave spectroscopy detects early star-forming galaxies through their far-IR emission lines, and will be a unique probe of cosmology and astrophysics beyond the reach of traditional galaxy surveys...

...but current mm-wave spectrometers are large and hard to scale up.

The SuperSpec on-chip spectrometer will enable filled focal planes with orders of magnitude more detectors than current instruments.

First demonstration of a R~300, 6-spectrometer receiver covering 200-300 GHz at the Large Millimeter Telescope is imminent!

In the next few years:

- Filled, multi-spectrometer focal planes
- Sensitivity for both astrophysics and cosmology!